Mark Scheme - PI1.1 Redox and Standard Electrode Potantials

Total [14]

[1]

as (only) seen in step 1

- 2 Both O₂ and O₃ have oxidation states of zero (1) No change in oxidation state (1) [2]
- 3 (a) diagram with labels to show
 - H₂/H⁺ shown in electrode (1)
 - platinum (in both electrodes) (1)
 - $Fe^{2+}(aq)$ and $Fe^{3+}(aq)$ (1)
 - high resistance voltmeter (1)
 - salt bridge (1)
 - gas at 1atm pressure, solutions of concentration 1 mol dm⁻³, temperature 298K (1)
 - [any 5]
 - (b) (i) successive ionisation energies increase gradually/ the energies of the d orbitals are similar
 [1]
 - (ii) $1s^22s^22p^63s^23p^64s^23d^{10} / 3d^{10}4s^2$ [1]
 - (iii) after 4s electrons lost 3d is full/ stable/ d electrons ionisation energy very high [1]
 - (c) (i) violet solution contains V2+ (1)
 - SEP Zn²⁺/ Zn is more negative than VO_3^-/VO^{2+} and VO^{2+}/V^{3+} and therefore releases electrons/ VO_3^-/VO^{2+} and VO^{2+}/V^{3+} are more positive than
 - Zn²⁺/ Zn and are stronger oxidising agents (1)
 - V^{2+} cannot be reduced (to V) since SEP is more negative than Zn^{2+}/Zn (1) [3]
 - (ii) 1.1V (ignore sign) [1]
 - (iii) $Zn(s) \rightarrow Zn^{2+}(aq) + 2e / Zn(s) \rightleftharpoons Zn^{2+}(aq) + 2e$ with some indication of direction [1]
 - (iv) if Zn²⁺(aq) concentration increased equilibrium moves to LHS (1) so electrode potential becomes less negative (1) [2]

	(d)	(i)	2.74×10^{-3} (mol)				[1]	
		(ii)	1.37×10^{-3} (mol)				[1]	
		(iii)	$M_r KIO_3 = 214.1$					
			moles $KIO_3 = 0.978/214.1 = 4.57 \times 10^3 \text{ in } 250 \text{ cm}^3$					
			4.57×10^{-4} in 25 cm ³					[1]
	(iv) $1.37 \times 10^{-3}/4.57 \times 10^{-4} = 3$ (
			equation 1 is correct since 3 moles of iodine formed (mark awarde				d for reaso	n) (1) [2]
							Т	otal [20]
4	(a)	(i)	Oxidising agent				[1]	
		(ii)	A = lead(II) chloride	/ PbCl ₂	(1)			
			B = chlorine / Cl ₂		(1)		[2]	
		(iii)	$[Pb(OH)_6]^{4-}/\ [Pb(OH)_4]^{2-}/\ Na_4[Pb(OH)_6]\ etc.$				[1]	
		(iv)	Yellow				[1]	
		(v)	PbO + 2HNO ₃ —	-	$Pb(NO_3)_2 + H_2O$		[1]	
	(b)	(b) (i) Each C atom covalently bonded to three other C atoms for					yers	
			Layers held together by weak intermolecular forces			(1) (1)		
			BN is isoelectronic with C so it forms similar structures (1)					
			Graphite conducts electricity since electrons are delocalised but in each N has a full unbonded p-orbital and each B has an empty unbonded p-orbital so it does not conduct electricity (1)					
			(Accept electrons are not delocalised in BN so it does not conduct electricity)				[4]	
			QWC The information is organised clearly and coherently, using specialist vocabulary where appropriate Wear-resistant coatings/catalyst support/for mounting high power electronic components / drills in industry / cutting instruments				[1]	
		(ii)					[1]	
	(c)	(i)	$\Delta G = \Delta H - T \Delta S$	$(\Delta G = 0 \text{ fo})$	or reaction to be spontane	ous)	(1)	
			$T = \frac{1.92}{0.0067}$		(1)			
			T = 286.6 K		(1)		[3]	
		(ii) Changes in temperature (above or below 286.6 K) cause change form making it unstable (and causing it to dising					0	

[1]

Total [11]

[2] (a) Lead(II) iodide or Pbl₂ (1) Bright yellow (1) $2Cu^{2+} + 4l^{-} \rightarrow 2Cul + l_{2}(1)$ (b) The precipitate is copper(I) iodide (stated or clearly indicated by state symbols) (1) [2] (c) Bromine has a more positive E⁶ than iodine so it is a stronger oxidising agent (1) Bromine is able to oxidise iodide (1) Bromine has a less positive E⁶ than chlorine so it is a weaker oxidising agent (1) Bromine is not able to oxidise chloride (1) MAX 3 OR Calculate EMF for each reaction (1 each) and state that positive EMF means reaction is feasible (1) [3] QWC Legibility of text, accuracy of spelling, punctuation and grammar, clarity of meaning [1] 1 mark for each two products or observations (d) KHSO₄ HI H₂S SO₂ S |₂ [MAX 2 for products] Yellow solid rotten egg smell steamy fumes Black solid or brown solution or purple fumes MAX 3 [3] (e) (i) Measure time taken for a sudden colour change (1) Rate = $1 \div time (1)$ [2] (ii) pH 1 has a concentration of H⁺ ten times higher than pH 2. [1] II. Order with respect to $H_2O_2 = 1$ (1) Order with respect to $I^- = 1$ (1) Order with respect to $H^+ = 0$ (1) [MAX 2 for the stated orders] Rate = $k[H_2O_2][I^-](1)$ [3] III. k = 0.028 (1) mol⁻¹dm³ s⁻¹ (1) [ecf from rate equation] [2] IV. Rate equation is unchanged and increasing temperature increases the value of the rate constant [1]

Total [20]

6